High-Dimensional Dueling Optimization with Preference Embedding

نویسندگان

چکیده

In many scenarios of black-box optimization, evaluating the objective function values solutions is expensive, while comparing a pair relatively cheap, which yields dueling optimization. The side effect optimization that it doubles dimension solution space and exacerbates dimensionality scalability issue e.g., Bayesian To address this issue, existing methods fix one when throughout process, but may reduce their efficacy. Fortunately, has been observed that, in recommendation systems, results are mainly determined by latent human preferences. paper, we abstract phenomenon as preferential intrinsic inject into resulting embedding (PE-DBO). PE-DBO decouples pairwise comparison via matrix. Optimization performed subspace with much lower dimensionality, completed original space. Theoretically, disclose preference can be approximately preserved lower-dimensional subspace. Experiment verify on molecule discovery web page tasks, exists superior compared state-of-the-art (SOTA) methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Binary Embedding for High-Dimensional Data

Binary embedding of high-dimensional data requires long codes to preserve the discriminative power of the input space. Traditional binary coding methods often suffer from very high computation and storage costs in such a scenario. To address this problem, we propose two solutions which improve over existing approaches. The first method, Bilinear Binary Embedding (BBE), converts highdimensional ...

متن کامل

Graph Drawing by High-Dimensional Embedding

We present a novel approach to the aesthetic drawing of undirected graphs. The method has two phases: first embed the graph in a very high dimension and then project it into the 2-D plane using principal components analysis. Running time is linear in the graph size, and experiments we have carried out show the ability of the method to draw graphs of 10 nodes in few seconds. The new method appea...

متن کامل

Generalized Reinforcement Learning for Manipulation Skills – Combining Low-dimensional Bayesian Optimization with High-dimensional Motion Optimization

This paper addresses the problem of how a robot can autonomously improve a manipulation skill in an efficient and secure manner. Instead of using the standard reinforcement learning formulation where all objectives are defined in a single reward function, we propose a generalized formulation that consists of three components: 1) A known analytic cost function; 2) A black-box reward function; 3)...

متن کامل

Dueling Bandits with Weak Regret

We consider online content recommendation with implicit feedback through pairwise comparisons, formalized as the so-called dueling bandit problem. We study the dueling bandit problem in the Condorcet winner setting, and consider two notions of regret: the more well-studied strong regret, which is 0 only when both arms pulled are the Condorcet winner; and the less well-studied weak regret, which...

متن کامل

Dueling Bandits with Dependent Arms

We study dueling bandits with weak utility-based regret when preferences over arms have a total order and carry observable feature vectors. The order is assumed to be determined by these feature vectors, an unknown preference vector, and a known utility function. This structure introduces dependence between preferences for pairs of arms, and allows learning about the preference over one pair of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i9.26335